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Abstract—Neural biomarkers that can classify or predict
disease are of broad interest to the neurological and psychiatric
communities. Such biomarkers can be informative of disease state
or treatment efficacy, even before there are changes in symptoms
and/or behavior. This work investigates EEG-estimated func-
tional connectivity (FC) as a Parkinson’s Disease (PD) biomarker.
Specifically, we investigate FC mediated via neural oscillations
and consider such activity during the Simons conflict task.
This task yields sensory-motor conflict, and one might expect
differences in behavior between PD patients and healthy controls
(HCs). In addition to considering spatially focused approaches,
such as FC, as a biomarker, we also consider temporal biomark-
ers, which are more sensitive to ongoing changes in neural
activity. We find that FC, estimated from delta (1-4Hz) and theta
(4-7Hz) oscillations, yields spatial FC patterns significantly better
at distinguishing PD from HC than temporal features or behavior.
This study reinforces that FC in spectral bands is informative of
differences in brain-wide processes and can serve as a biomarker
distinguishing normal brain function from that seen in disease.

Index Terms—Cognitive Control, Brain Oscillation, Functional
Connectivity, Phase Synchronization, Parkinson’s Disease

I. INTRODUCTION

With the advent of high-density neural recording tools (e.g.,
Neuropixels), there is an increasing interest in investigating
neural activity in localized brain regions [1]. An alternative
approach is to consider brain-wide activity, albeit at a coarser
temporal scale (e.g., not measuring spiking activity), since the
technology does not exist for such spatial coverage at the
resolution of neuronal spikes, particularly for humans. Many
brain-wide analyses have instead focused on lower temporal
resolution neural oscillations (1-40Hz). Such oscillations are
believed to link neural activity across disparate regions, po-
tentially binding activity in a way that yields our integrated
and coherent perception of the world [2].

Recent studies have shown brain oscillations drive func-
tional connectivity (FC) across cortical and subcortical net-
works [3], [4]. Moreover, the specific spatiotemporal prop-
erties of such FC appear to correlate with normal cognitive,
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emotional, and perceptual functions as well as neuropatholo-
gies [5], [6]. For instance, investigating differences in FC
between disorders such as schizophrenia and bipolar disorder
has provided insights into possible disease mechanisms [7].
This growing body of research has highlighted the potential
utility of FC as a biomarker for identifying cognitive function
and diagnosing brain disorders.

In this study, we investigate EEG-estimated FC as a po-
tential biomarker for Parkinson’s disease (PD) when both
PD patients and healthy controls (HCs) are engaged in the
Simon conflict task. Using different machine learning (ML)
models, we systematically assess the relative importance of
temporal and spatial-focused features in classifying PD vs.
HC. Our findings show that spatial features represented by
EEG-estimated FC are extremely good at classifying PD vs.
HC, while models focusing on temporal features perform
substantially worse. Notably, neither spatial-FC features nor
temporal features are particularly good at classifying trial
conditions (i.e., congruent vs incongruent trials). This suggests
that FC is a potential spatial biomarker for PD that is not
simply an artifact of brain signals that differentiate task
performance or task condition. Based on this finding, we
also investigated the significance of functional connectivity
patterns using a statistical approach – the surrogate test. The
results reflect a similar interpretation, evidenced by the higher
number of electrode pairs that remain relevant after applying
a threshold for group comparisons, as opposed to a reduced
number of pairs for trial condition comparisons.

II. RELATED WORK

A. Brain Oscillations and Cognitive Coordination

Neuronal oscillations are believed to play various roles in
brain function [4]. Because neuronal oscillations can change
the dynamic interactions between brain regions, they have
been proposed as a mechanistic gate for routing information
on a fast time scale [8]. Oscillations in different frequency
bands are believed to be essential for flexible and coordinated
brain function, with recurrent connections between excitatory
and inhibitory cell populations producing resonant oscillation
frequencies that depend on the decay time constants in the
neural populations [9].20
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B. Simon Conflict Task

The Simon conflict task is a widely employed cognitive
paradigm designed to investigate the influence of conflicting
information on response inhibition and decision-making pro-
cesses. The task engages participants in a visual-spatial conflict
by presenting stimuli in a way that creates a misalignment
between the spatial location of the stimulus and the required
response [10]. It has been shown valuable for probing the
mechanisms underlying cognitive control, attentional process-
ing, and the brain’s ability to resolve conflicting informa-
tion [11]. The task requires flexible and coordinated processing
that is typically characterized by the term “cognitive control”.

C. Functional Connectivity

Oscillatory neuronal activity may provide a mechanism for
dynamic network coordination and be the basis for what is
typically called functional connectivity (FC). FC is believed
to exist, and even change, while an individual is at rest or
engaged in a task. FC is thought to be crucial for governing
information processing and functional execution across diverse
brain areas [4], [12]. Population differences in FC have also
been investigated as being potential biomarkers of neurological
disease and psychiatric illness [7], [13]–[15]. In many cases,
machine learning is used to characterize features of FC and
classify individuals or populations.

D. Machine Learning Models

a) Random Forest (RF) Models: Random Forest (RF) is
a widely employed machine learning method for classification
problems [16]. Based on the ensemble learning paradigm,
RF leverages the power of decision trees by constructing an
ensemble of them and subsequently combining their predic-
tions [17]. By aggregating the outcomes of multiple decision
trees through a voting mechanism, RF models offer robustness
against noise and outliers, making it a versatile tool in various
domains.

b) Long Short-Term Memory (LSTM) Networks: A Long
Short-Term Memory (LSTM) network is a type of recurrent
neural network (RNN) architecture that has gained prominence
in deep learning due to its ability to capture and model long-
range dependencies in sequential data [18]. Unlike traditional
RNNs, LSTM utilizes specialized gating mechanisms, includ-
ing input, forget, and output gates, which enable them to selec-
tively store and update information over extended sequences,
thus mitigating the vanishing gradient problem [19]. Owing to
their proficiency in handling sequential data of varying lengths
and complexities, LSTMs have found widespread applications
across various fields, including natural language processing,
speech recognition, time series forecasting, and neural data
analysis.

c) Convolution Neural Networks (CNN): Convolution
Neural Networks (CNNs) have revolutionized the field of
computer vision and image analysis due to their exceptional
ability to extract hierarchical features from visual data [20].
The architecture’s success can be attributed to its ability to
learn discriminative features from data through training. These

neural networks, inspired by the human visual system, consist
of multiple layers of learnable filters that perform convolution
operations on input images, enabling them to capture local and
global patterns [21].

III. METHODOLOGY

A. Experimental Dataset

We investigated functional connectivity within the con-
text of the Simon conflict task using an open-source EEG
dataset [22]. In the task, a stimulus is presented on either the
left or right side of the screen and participants are instructed
to press the left key when the stimulus is yellow/red and the
right key when it is cyan/blue [11]. A congruent trial is when
the stimuli match the side of the screen where the response
hand is located, while an incongruent trial is when the stimuli
appear on the opposite side of the screen from the response
hand (i.e., spatially congruent/incongruent, see Fig. 1a).

Fig. 1. Overview of the experimental setup and the extracted temporal/spatial
features. a. Illustration of the Simon conflict task (see text for details). b.1
Epoched 1-second temporal feature after the stimulus onset, specifically the
voltage at electrode Cz within the delta band for incongruent trials. The
average response time (RT) is 549.6±113.1 ms for HCs and 563.2±156.2
ms for PD patients in the incongruent trials (highlighted with the vertical
dashed line separately, see Fig. 3a.1 and a.2 for more details about RT). b.2
A corresponding spatial feature from the same time window. The difference
in functional connectivity (represented by Pearson Correlation) between HC
and PD patients is plotted as an example.

TABLE I
EXPERIMENT DATA SUMMARY

# of Trials Patient (49) Control (26) Total Averagea
Congruent 7422 4456 11878 158±27

Incongruent 6655 4235 10890 145±34
Total 14077 8691 22768 -

aAverage within each subject by trial condition.

Our analysis includes a subset of 75 subjects from the
open-source dataset, encompassing 49 patients with PD and
26 HCs (see experiment summary in Table I). EEG was
recorded using a 64-channel BrainVision system. The EEG
was high-pass filtered at 0.1Hz and down-sampled to 500Hz.
Electrode Pz was used as the reference, and electrode Fpz
was used as the ground. EEG activity at electrode FT9 was
excluded since a specialized cap without FT9 was employed,
resulting in 63 channels for further analysis (see TABLE II).
Additional details about subject recruitment and data recording
are available in their latest paper [11].

B. Temporal Biomarkers: Band-passed electrode time series
(BPT)

Since low-frequency oscillations are modulated by conflict,
attention, and timing and are also known to be specifically
impaired in PD [23], [24], we focus our analysis of temporal
biomarkers in delta (1 to 4Hz) and theta (4 to 7Hz) bands
of the EEG. Bidirectional filtering was applied to the raw
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EEG data using a bandpass filter (Matlab2023a) to attenuate
frequencies outside the delta and theta bands. Event-related
potentials (ERPs) were extracted with respect to the onset of
the stimuli (marked as 0 seconds), spanning from -0.5 seconds
before to 1.5 seconds after the stimulus. Baseline removal was
done based on the entire epoch. To align the brain activity
with the behavioral response, we exclusively considered the 1-
second interval following the stimulus onset (see Fig. 1b.1 and
b.2), as the maximum response time (RT) typically falls within
this time frame (see Fig. 3a.1 and a.2). This extracted 1-second
band-passed time series (BPT) of all electrodes were then used
as temporal feature inputs for ML models (see TABLE II).

C. Spatial Biomarkers: Functional Connectivity (FC)

FC can be quantified using multiple different metrics, each
possessing its own strengths and limitations [25]. Here, we
employed three non-directed methods for FC measurement,
encompassing amplitude-based, phase-based, and amplitude-
phase-mixed approaches.

1) Pearson Correlation (PC): The simplest metric for non-
directed interactions is the Pearson correlation coefficient,
which measures the linear relationship between two random
variables [26]. PC focuses on the dynamic connection between
regions represented by their voltage (i.e., amplitude) changes.

PC(x, y) =
∑n

i=1(x(ω, i)− x̄)(y(ω, i)− ȳ)√∑n
i=1(x(ω, i)− x̄)2

∑n
i=1(y(ω, i)− ȳ)2

(1)

where x(ω, i) (y(ω, i)) are the values of x (y) in a sample i
of target frequency band ω (i.e., theta, alpha, etc.); n is the
number of samples; x̄ (ȳ) is the mean of x (y).

2) Phase Locking Value (PLV): An alternative metric to
measure FC is to evaluate the synchronization between cortical
areas (e.g., between electrodes from EEG recordings). PLV
estimates how the relative phase between signals is distributed
over the unit circle [27]. PLV is a scalar value that ranges from
[0, 1], where 1 indicates the strongest phase synchronization
between regions/electrodes [28].

PLV(x, y) =
| 1n

∑n
i=1 1x(ω, i)1y(ω, i)e

i(ϕx(ω,i)−ϕy(ω,i))|√
( 1n

∑n
i=1 1

2
x(ω, i))(

1
n

∑n
i=1 1

2
y(ω, i))

(2)

where ϕx(ω, i) (ϕy(ω, i)) is the phase of x (y) obtained by the
Hilbert transform in a sample i of targeted frequency band ω;
n is the number of samples.

3) Phase Coherence (COH): A measurement similar to
PLV that represents FC with phase synchronization is COH. It
is basically an extension of PLV. Instead of only considering
the phase after the Hilbert transform, COH is computed from
both the amplitude and the phase [25].

COH(x, y) =
| 1n

∑n
i=1 Ax(ω, i)Ay(ω, i)e

i(ϕx(ω,i)−ϕy(ω,i))|√
( 1n

∑n
i=1 A

2
x(ω, i))(

1
n

∑n
i=1 A

2
y(ω, i))

(3)
where Ax(ω, i) (Ay(ω, i)) is the amplitude and ϕx(ω, i)
(ϕy(ω, i)) is the phase of x (y) obtained by Hilbert transform

in a sample i of targeted frequency band ω; n is the number
of samples.

D. Comparing Machine Learning Models

We used the RF model as a benchmark model for comparing
classification performance and assessing the relative effective-
ness of temporal (i.e., voltage changes of ERPs) and spatial
(i.e., FC) features. LSTMs were used to analyze temporal
features, and CNNs used for spatial features, given that their
designs matched these dimensions. We also compared the
spatial feature weights extracted from different models to
gain deeper insight into the importance of FC features across
different ML models. By employing this diverse set of ML
architectures, our aim was to comprehensively explore the
features embedded within the neural data (see Table II). The
dataset (see Table I) was divided into three subsets: 64%
for training, 16% for validation, and the remaining 20% for
testing. We considered the imbalanced dataset distribution to
ensure robust and accurate results and applied a 10-fold cross-
validation during training.

TABLE II
MODEL ARCHITECTURES SUMMARY

Model Input Shape Layers Para Size
RFa (31500, ) - -
RFb (1953, ) - -

LSTM1c (63, 500) (256, 256)-256 3.51MB
LSTM2 (63, 500) (256, 128)-256 2.13MB
LSTM3 (63, 500) (128, 128)-256 1.01MB
LSTM4 (63, 500) (128, 64)-256 647.00KB
LSTM5 (63, 500) (64, 64)-256 327.00KB
LSTM6 (63, 500) (64, 32)-256 214.50KB
CNN1d (63, 63) (32)-256 26.29MB
CNN2 (63, 63) (16)-256 13.15MB
CNN3 (63, 63) (16)-128 6.58MB
CNN4 (63, 63) (16)-64 3.29MB
CNN5 (63, 63) (16)-32 1.65MB
CNN6 (63, 63) (8)-32 842.69KB

aInput shape is transformed into a flattened representation (31500=63×500).
bInput shape is transformed into a flattened representation, and repeated

values have been removed (1953=63×62/2). cThe number within
parentheses represents the dimensionality of the LSTM layer, and the value
following the hyphen(-) indicates the size of the dense layer. dThe number
within parentheses represents the dimensionality of the CNN layer, and the

value following the hyphen indicates the size of the dense layer.

For all the FC approaches, we use the BPT data to compute
the FCs. Thus, both the BPT and FC use the same time window
of EEG and frequency bands, however, BPT maintains the
time-series information while FC collapses it into a spatial
connectivity measure across the brain.

E. Surrogate Tests

Since phase-related functional connectivity metrics such as
PLV and COH are usually highly sensitive and can yield
spurious results (e.g., two narrow-band Gaussian white noise
processes can generate a moderate phase-related index), we
employed the surrogate test to detect the statistically signifi-
cant patterns in FC represented by PLV and COH [30]. The
essence of the surrogate test is to test statistical significance
from an artificially generated null distribution of surrogate
signals that simulate the Fourier Power Spectrum of the
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Fig. 2. Prediction accuracy (HC vs. PD) from ML models. a.1 Model performance with features in the delta band (1-4Hz). Among the LSTM and CNN
models trained and evaluated (see Table II), we show the model having the highest test accuracy (highlighted with square markers). The bar plots are generated
using 10-fold cross-validation results (mean ± standard deviation). Each model’s highest validation accuracy is highlighted with a circle marker. We used the
Mann-Whitney-Wilcoxon test given the small sample sizes (n=10) [29]. The significance level of the test result (multi-comparison un-corrected) is indicated
by a black asterisk, where *** indicates significance under a 99.9% confidence interval, ** indicates significance under a 99% confidence interval, and *
indicates significance under a 95% confidence interval. a.2 is similar to a.1, except that models are evaluated in the theta band (4-7Hz).

original signal. To generate this null distribution, we use an un-
windowed Fourier transform algorithm [31], which randomizes
the phases by multiplying each instantaneous phase by eiϕ,
where ϕ is independently chosen from a uniform distribution
U([0, 2π]).

We simulated 100 surrogate signals of the original signal
for each trial and computed the corresponding surrogate FC
in PLV(COH). The statistical significance of each PLV(COH)
measurement was assessed by comparing it to the distribution
of surrogate PLVs (COHs) (p < 0.05). Repeating this method
for all electrode pairs for one trial returned a subset of
statistically significant electrode pairs, represented by a feature
matrix where 1 indicates a significant pair and 0 indicates an
insignificant pair.

IV. RESULTS

A. Model Prediction Efficiency and Accuracy

We investigated two binary classification tasks: group dif-
ferentiation (PD vs. HC), which is our primary goal, and
trial condition differentiation (congruent vs. incongruent). The
reason for the latter is that we wanted to check that any poten-
tial biomarker of group differentiation was not simply due to
detecting differences in how the two populations (PD and HC)
did the task. We found for all models and both biomarker types
(BPT and FC), there was no ability to discriminate between
the trial conditions (mean accuracy 51%, p = 0.564). We
did, however, find significant discrimination of group (PD vs
HC) using the biomarkers, across all ML model types (see
Table II). We saw this discrimination both in the congruent
trial and incongruent trial data, further indicating that the
biomarkers were not artifacts of task condition differences but
rather intrinsic disease states.

The spatial-focused features (i.e., FC) consistently outper-
formed temporal features (i.e., BPT) in both the delta and
theta bands. Within the delta band, the amplitude-phase-mixed
FC metric, i.e., COH, showed the highest validation and test

accuracy using the RF model among congruent trials and
the CNN model among incongruent trials (see Fig. 2a.1).
Amplitude-based prediction using the theta band performed
better than the delta band (87% in delta vs 95% in theta
with the LSTM). The amplitude-based FC metric, i.e., PC,
results in the highest validation and test accuracy using the
RF model for the data from the congruent trials and the
incongruent trials (see Fig. 2a.2). For CNN models, COH-
derived FC usually generates the best performance, though
when considered statistically, there were no significant perfor-
mance differences between the different FC metrics. Although
similar test accuracies are obtained in both RF and CNN
models given spatial features as input, the RF model showed
more robust performance across validation folds, reflected in
the smaller variance in validation accuracy.

We used the best model (i.e., has the highest test accuracy)
obtained from trial-level prediction of PD vs HC to predict the
group condition at the subject-level. We did this by computing
the fraction of trials that the subject was characterized as
PD vs HC, and we call this the subject-level probability.
We also compared the results to just using behavior in the
task (classifying by RT). Fig. 3b.1 shows the probabilities
of one subject being classified as a PD patient with FC
calculated in the delta band. Notably, both temporal and
spatial features effectively distinguish between different group
conditions. However, the models utilizing spatial features have
better accuracy, with the subject-level probability scores being
closer to 0 for HC subjects and closer to 1 for PD patients.
This distinction underscores the efficacy of spatial features
in effectively differentiating between groups on an individual
level. Analyses within the theta band yielded similar results
(see Fig. 3b.2).

B. Evaluation of Spatial Biomarker Patterns using Surrogate
Tests

We performed the surrogate test analysis to compare the
spatial FC patterns between HC and PD computed for different
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Fig. 3. Classification probability given different biomarkers. a.1 Histogram
of RT and receiver operating characteristic (ROC) curve of HC vs PD
classification based on reaction time (RT). a.2 is similar to a.1, but for the
incongruent trials. b.1 Subject-level probabilities of classifying HC vs PD.
Both spatial FC (yellow) and temporal BPT (green) biomarkers outperform
RT (gray), with 26 controls having probabilities less than 0.5 and 49 patients
having probabilities greater than 0.5. The spatial FC biomarkers are clearly
more accurate than the temporal BIT biomarkers across the population.

trial conditions (congruent or incongruent). We first computed
a significance mask across the FC dimensions using a p < 0.05
criterion under the null hypothesis created by the surrogate
data. We applied this mask to all trials for each condition
and then computed the percentage of trials that passed this
test against the null (see Section III-E). We considered two
thresholds, 60% and 80%. For example, a 60% threshold in
Fig. 4 represents FC patterns that pass the surrogate test for
more than 60% of all trials. We compared the FC network
patterns between groups (HC vs. PD). We see that most of
the dimensions of the FC biomarkers are common across the
congruent and incongruent trials (purple color Fig. 4). This is
consistent with our previous findings which showed that the
ML classifiers could not distinguish trial type using the FC
biomarker –i.e. there is no difference between the congruent
or incongruent trial types. In addition, we see that the theta
band derived FC has more robust FC dimensions relative to
those derived from the delta band-i.e. more dimensions survive
the surrogate test at the 80% threshold in theta than for delta.

Fig. 4. The surrogate test identified significantly (p < 0.05) different
functional connectivity (FC) patterns under different thresholds (60% and
80%). a.1 Different FC patterns between groups within the delta band. Each
color represents a comparison within one trial condition (red: congruent,
labeled as 1 in the legend, e.g., C1 means HC-congruent; blue: incongruent,
labeled as 2 in the legend, purple: shared in both conditions). a.2 follows the
layout of a.1, except that it is computed based on the theta band.

V. DISCUSSION AND CONCLUSION

This work investigated spatial and temporal biomarkers of
Parkinson’s disease (PD) derived from EEG data recording
while participants performed the Simon conflict task. We

found that spatial biomarkers, specifically those constructed
to represent functional connectivity, were superior to temporal
biomarkers in classifying PD vs. HC. Noteworthy was that the
FC and BPT temporal features could not be used to classify
trial conditions (congruent vs. incongruent), suggesting that
the underlying biomarkers were not task-specific but related
to fundamental differences in brain function across the groups
and independent of the task. We did not have data to test
whether PD vs. HC classification was possible with these
biomarkers in resting state EEG, or during another task, so
it remains to be seen if the performance of the task is critical
for inducing brain states that differentiate the two populations.
Given that our analysis was event-locked (to the stimulus
presented in this case), it does suggest that a task is desirable
for aligning the neural data to construct the biomarkers.

We further explored the significance of the FC biomarkers
via a statistical surrogate test with results consistent with our
ML results, namely that the FC biomarkers capture spatial
information that differentiates PD from HC and which is not
simply a result of differences in task performance or trial
condition. Our work supports the potential diagnostic value
of spatial features, specifically functional connectivity derived
from EEG measures.
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