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Figure 1: Our method integrates human gaze into Vision Transformers (ViT) to improve the prediction of driving decisions 
(left-right turns). We propose training ViT with a modifed loss function, Fixation-Attention Intersection (FAX) loss, which 
calculates the intersection (dot product) of the model’s attention map with the human fxation map. Experiments with both 
virtual reality and real-world datasets demonstrate that gaze integration enhances ViT accuracy in uncertain conditions (e.g., 
fog, bad weather/light conditions). When trained with FAX loss, the model’s attention aligns with human gaze. Additionally, 
we release a novel dataset of human driving decisions collected in virtual reality to study turn behavior. 
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Abstract 
Vision Transformers (ViT) have advanced computer vision, yet their 
efcacy in complex tasks like driving remains less explored. This 
study enhances ViT by integrating human eye gaze, captured via 
eye-tracking, to increase prediction accuracy in driving scenarios 
under uncertainty in both real-world and virtual reality scenarios. 
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First, we establish the signifcance of human eye gaze in left-right 
driving decisions, as observed in both human subjects and a ViT 
model. By comparing the similarity between human fxation maps 
and ViT attention weights, we reveal the dynamics of overlap across 
individual heads and layers. This overlap demonstrates that fxation 
data can guide the model in distributing its attention weights more 
efectively. We introduce the fxation-attention intersection (FAX) 
loss, a novel loss function that signifcantly improves ViT perfor-
mance under high uncertainty conditions. Our results show that 
ViT, when trained with FAX loss, aligns its attention with human 
gaze patterns. This gaze-informed approach has signifcant poten-
tial for driver behavior analysis, as well as broader applications in 
human-centered AI systems, extending ViT’s use to complex visual 
environments. 

CCS Concepts 
• Human-centered computing → Interaction design; Virtual real-
ity; HCI theory, concepts and models; 
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1 Introduction 
The performance of Vision Transformers (ViT) [9], has exceeded 
human performance across various visual tasks. ViT have exhibited 
state-of-the-art performance in tasks such as image recognition, 
action classifcation, and even autonomous driving [21]. The success 
of ViT has recently been attributed to their ability to process visual 
scenes like humans. This is particularly evident in their broader 
receptive felds compared to other model architectures and the 
distinct patterns of errors they exhibit [28]. Yet, utilizing ViT in 
real-world situations like driving poses challenges stemming from 
their limited interpretability and the absence of frameworks for 
direct human guidance. 

We propose a novel approach 1 to tackle these challenges: incor-
porating eye-tracking data into ViT. Eye fxations ofer a reliable 
measure of visual behavior and are often used to analyze human per-
ception of intricate scenes [5]. Moreover, the attention mechanism 
intrinsic to ViT has been leveraged to study their interpretation of 
images and videos [4, 12]. We conduct experiments on two datasets 
involving human turn-taking decisions in virtual and real-world 
scenarios. Our primary objective is to uncover the relationship 
between human fxations and model attention to enhance the pre-
cision and reliability of decisions achieved by their combination. 

First, we highlight diferences in decision-making between hu-
mans and transformers in driving scenarios (left and right turning 
choices) under various types of uncertainty, expressed as opacity 

1Code and data available at: github.com/schko/fxatt 

or contrast of the visual scene. Humans tend to mitigate localized 
uncertainty by fxating on fewer scene regions for extended dura-
tions. We then propose the fxation-attention intersection (FAX) 
loss, which calculates the intersection (dot product) of the model’s 
attention map with the human fxation map. Experiments with 
both virtual reality and real-world datasets demonstrate that gaze 
integration enhances ViT accuracy in uncertain conditions (fog, bad 
weather/light conditions). When trained with FAX loss, the model’s 
attention aligns with human gaze patterns, showing the potential 
for predicting human gaze. Additionally, we release a novel dataset 
of human driving decisions collected in virtual reality to study turn 
behavior. 

2 Related work 
The parallel between human and machine vision has attracted 
considerable interest. Recent approaches have emphasized trans-
formers’ self-attention attributes and receptive felds, which mirror 
the human visual system [28], are robust to occlusions and pertur-
bations [27], generalize to multiple problems, and highly accurate 
compared to convolutional networks [11, 18]. Transformer-based 
architectures have shown high accuracy in predicting various eye 
tracking measures, such as types of eye behavior, gaze paths, or 
saliency maps [16]. Previous research has primarily explored retro-
spective comparisons between human and model attention using 
transformer-based networks [17, 26], or methods like knowledge 
distillation through teacher-student model designs. An alternative 
approach [25] in the context of Visual Question Answering (VQA) 
uses saliency-predicting models to guide model attention by inte-
grating human-like attention across both image and text modalities. 
While these approaches provide valuable insights into aligning ma-
chine with human attention, they do not directly integrate human 
gaze into the model training process. Our proposed method com-
bines the advantage of larger receptive felds of ViT with the ability 
of the human visual system to gather task-relevant information 
from complex scenes quickly [23] during model training. 

Eye-tracking in humans can provide many insights into the 
behavioral and neural dynamics that underlie the fexible decision-
making required in tasks such as driving. Current research in driv-
ing behavior has focused on integrating eye tracking to driver 
monitoring systems to index the driver’s attention and alertness 
as given by fxation coordinates and pupil dilation [5, 20]. Recent 
gaze-driven driving research has also been focused on identifying 
when a driver is distracted or not paying attention to the road. 
These systems can detect inattention by analyzing gaze direction 
and duration and provide warnings or interventions to maintain 
safety [1, 8]. Eye-tracking can aid in predicting the driver’s inten-
tions, such as lane changes or turns [7]. By analyzing gaze-based 
indices, an automated system can anticipate the driver’s maneuvers, 
adjust its behavior accordingly, and potentially use gaze patterns 
to ensure safety and efciency. 

Humans are notably successful in performing sensorimotor de-
cisions under uncertainty compared to their artifcially intelligent 
counterparts [3, 6, 15]. In tasks such as making a right turn onto a 
street, humans can infer and integrate information across spatial, 
temporal, and sensory modes for optimal and efcient decisions [10]. 
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Recent advances in state-of-the-art robotics aim to integrate tem-
plates of the processes that underlie sensorimotor decision-making 
in humans to improve existing fexibility in decision-making [19, 
22]. Prior studies have revealed that visual attention is a critical cog-
nitive process in performing sensorimotor decision-making tasks 
in the information processing stage but not in the motor planning 
stage [8, 24]. Visual attention is often evaluated with eye tracking 
technologies as visual information available to a subject depends 
on the feld of view and the position of the pupil [23]. 

3 Proposed Methods 
3.1 Baseline Vision Transformer 
Following the original ViT architecture [9], the representative frame 
x ∈ R� ×� ×� from the premotor period prior to motor action is 
divided into � non-overlapping patches of size � × � , which are 
then fattened to form x� ∈ R� ×(� 2 ·� ) , where (�,� ,�) are the 
dimensions of the input frame and � = �� /�2 is the total number 
of patches. Given that �, � = 1 . . . �, represents the number of 
attention heads and �, � = 1 . . . �, the number of layers in the ViT 
model, we choose to implement a ViT model with � = 12 layers 
and � = 12 attention heads. The weights for each attention head 
across layers are given by: 

q(�,�) k� 
(�,�) ª A(�,�) = sofmax ©­ √ ® (1) 

�ℎ« ¬ 
where A(�,�) ∈ R(� +1)×(� +1) and �ℎ = �/�, where � is the 

embedding size. We convert the attention weight matrix A(�,�) into 
a vector a(�,�) ∈ R� by averaging over patches, while excluding 
the CLS token. The resulting vector a(�,�) illustrates how the model, 
at head � and layer � , assigns attention to diferent image patches 
and is used to visualize attention maps. 

In our specifc application, which centers around predicting left 
or right turns based on the premotor period frame, we employ bi-
nary cross entropy loss (L��� ) as the loss function for the baseline 
ViT model. 

L��� = −�1 · log(�1) − �2 · log(�2) (2) 
where �1, �2 ∈ {0, 1} denotes the two classes (left, right) and 

�1, �2 ∈ [0, 1] represent the predicted probabilities for the left and 
right class respectively. 

3.2 Fixation Maps 
Fixation maps f ∈ R� ×� represent the aggregate eye gaze during 
the premotor period and match the size of input frames. We defne 
fattened patches of fxation map f� ∈ R� ×(� 2 ·� ) , similar to the 
approach in the baseline ViT model. Additionally, we resize and 
fatten the original fxation map f to produce the vector f��� ∈ R� , 
which has same size as the vector a(�,�) of the ViT model and is 
used to compute the similarity between the attention and fxation 
maps. 

3.3 Fixation-Attention Intersection (FAX) Loss 
To better guide the baseline ViT model to simulate human attention, 
we introduce a novel fxation-attention intersection loss L��� to 

improve the model’s ability to capture human-like attention pat-
terns during training. This loss quantifes the average intersection 
(I) as the dot product between ViT attention weights a(�,�) of all 
heads across all layers and the reduced human fxation map f��� . To 
ensure compatibility between L� �� and L��� , we apply a sigmoid 
function to the average intersection I. This prevents I from being 
too small, which could otherwise make L� �� disproportionately 
large and dominate L��� . Restricting I to a range between 0.5 
and 1 keeps both loss terms on a comparable scale, allowing their 
efective combination. Í� Í� 

a(�,�) · f��� 
� � I = (3)

� · � 

1 
=L� �� (4)

sigmoid(I) 
Finally, we defne L��� by combining L� �� with the original 

classifcation loss L��� : 

L��� = (1 − �) · L��� + � · L� �� , (5) 
where �, � ∈ [0, 1], is the hyperparameter used for the weighted 

addition of the two losses. To determine the optimal value of � for 
our experiments, we systematically evaluated a range of � values, 
namely {0.01, 0.1, 0.2, 0.8, 1}. 

3.4 Peripheral Masking of the Input 
Peripheral masking involves the removal of regions outside the 
visual periphery within the frame. This is achieved by expanding the 
fxation area within fxation maps (f� ) and zeroing all pixels outside 
of this area (Fig. 2). To study the importance of human-fxated 
regions, we transform input data using peripheral masking for both 
datasets and compare the performance with random rotation and 
translation of the mask in a “random masking” control. 

Figure 2: Peripheral masking of the input. 

4 Datasets 
4.1 VR Dataset 
The VR dataset was collected as a part of a more extensive study 
on closed-loop brain-computer interface [14] (Fig. 7). 10 partici-
pants were recruited to complete a boundary avoidance task (BAT), 
presented by the HTC Vive Pro Eye VR headset, in a virtual city 
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Table 1: Overview of VR and DR(eye)VE datasets. 

Dataset Uncertainty Train Set Valid Set Test Set Left Turns(%) Density Contrast 

VR High 2015 356 599 48.9 0.65 -
VR Low 2020 356 600 51.1 0.24 -

DR(eye)VE High 236 55 73 51.0 - 0.11 
DR(eye)VE Low 236 55 73 46.7 - 0.39 

environment with varying visual noise opacity. Using the Logitech 
G steering wheel, participants were instructed to drive a simulated 
car toward target locations. Steering wheel data and a video of the 
driving scene were recorded throughout the driving sessions. We 
identify motor actions through a simple peak and trough-detection 
technique on the steering wheel channel. Using a non-overlapping, 
look-behind window of 750ms, we assured that the peak we encoun-
tered was the true peak in steering wheel activity. The transformer 
models in our study were trained with frames corresponding to indi-
vidual left-right turn motor actions. There are 6006 frames identifed 
to be associated with a left or right turn, with 3293 left-turn frames. 
In addition to the video and steering information, eye-tracking 
data was collected using an HTC VIVE Pro Eye headset. Gaze co-
ordinates from the eye tracker was used to construct the fxation 
map for each input frame. This map was computed by aggregating 
fxation data spanning a 3-second duration of the premotor period. 
We use the last frame in this premotor period as the input to all 
models. 

4.2 DR(eye)VE Dataset 
DR(eye)VE [2] is a publicly available driving dataset collected in 
real-world conditions across various landscapes, weather condi-
tions, and times of day. The dataset contains gaze coordinates, driv-
ing speed, and course information for more than 500,000 frames. 
Geo-referenced locations are also available approximately every 
25 frames. Because steering wheel data was unavailable, we used 
a combination of relative car positions, global positioning coor-
dinates, and driving speed to identify left and right turn actions. 
To ensure the accuracy of our automated turn detection pipeline, 
at least two of the authors reviewed the videos manually and an-
notated frames corresponding to left or right turns. After review 
and validation of video frames, we identifed 728 frames associated 
with a left or right turn, with 348 left-turn frames. Eye tracking 
data was collected using an SMI ETG 2w sensor. Fixation maps 
were computed using the same method for the VR dataset with a 
premotor period of 1 second. We use the frst frame in this premotor 
period as the input to all models, driven by the relatively narrow 
feld of view of the DR(eye)VE scene camera compared to the VR 
scene camera. 

4.3 Uncertainty in Visual Scene 
In our study, uncertainty refers to the visual conditions within a 
scene that hinder a driver’s ability to clearly recognize objects. 
These conditions include various factors such as fog, weather, 
and lighting, which difer between the VR and real-world driv-
ing datasets. Although the specifc defnition of uncertainty varies 
between these datasets, the common factor is that high uncertainty 

corresponds to scenes where the driver has difculty to perceive 
objects clearly, whether due to dense fog in the VR environment or 
adverse weather and lighting conditions in the real-world dataset. 

In the VR dataset, we manipulated visual uncertainty on a trial-
by-trial basis by adjusting the visual noise opacity parameter, as 
described in [14]. This adjustment simulates the type of white, 
1/f noise typically found in visual search tasks, and participants 
perceived it through the varying density of fog in the virtual city 
environment. High noise opacity represented higher uncertainty, 
making it more difcult for participants to distinguish objects and 
navigate the scene. 

In the DR(eye)VE dataset, which represents real-world driving 
scenarios, uncertainty was quantifed by computing the average 
contrast across the entire image. This contrast was calculated by av-
eraging the local pixel contrast, determined from the minimum and 
maximum luminance within a 5×5 kernel around each pixel. Lower 
average contrast indicates higher uncertainty, as it refects poorer 
visibility conditions, such as bad weather or low-light situations, 
where distinguishing objects becomes more challenging. 

We summarize the two datasets in Table 4. We also provide a 
video of an example turn from both datasets (see supplementary 
material). 

5 Results 
5.1 Comparing Human and Model Attention 

Under Uncertainty 
To establish the importance of integrating eye gaze into ViT, we 
analyze the complementary nature of human and model attention 
under uncertainty. This is demonstrated through a comparison of 
human fxation maps (Fig. 3A) with the attention weights from the 
12-layer baseline ViT model (Fig. 3B, C) in the VR dataset, selected 
for its larger sample size. 

The distribution of fxations in both datasets (gray) indicates 
that viewing time is concentrated around the center of the frames, 
although relatively sparse, with a larger fxation area for DR(eye)VE 
than the VR dataset. This diference is likely because participants 
were goal-directed in the VR dataset, focusing on avoiding the 
boundary and navigating through the environment with diferent 
levels of visibility. In comparison, in the DR(eye)VE dataset, partici-
pants needed to remain vigilant about other vehicles, attend to road 
signs, and ensure a safe driving experience by exploring the scene 
for unexpected events. The high uncertainty conditions across both 
datasets result in longer relative fxation durations in fewer regions. 
This fnding is consistent with existing literature [23] and suggests 
that humans minimize local spatial uncertainty in low-visibility 
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Figure 3: (A) KDE plot illustrating the distribution of fxations across pixel coordinates (x and y) across all test sample frames in 
the VR and DR(eye)VE datasets. Fixations are extracted from and aggregated over the premotor period prior to motor decisions. 
Higher density distribution indicates higher fxation duration. Class-specifc (left or right) distributions are denoted in red; 
the overall distribution is gray. (B and C) Qualitative ViT results from two test samples corresponding to low (B) and high (C) 
uncertainty conditions in the VR dataset. X = dot product similarity between fxation and respective activation map. Only 
weights from 3 heads across 3 layers, corresponding to the frst, middle, and last layers, respectively, are shown. 

scenarios through longer fxation time in fewer areas rather than 
minimize global uncertainty through an exploration strategy. 

During the decision-making process concerning left or right 
turns, the attention weights (as depicted in Fig. 3B, C) exhibit 
broader scene coverage than human fxation maps. This phenome-
non is characterized by increased attention across the entire frame, 
particularly in high-uncertainty scenarios. Furthermore, the overall 
attention across ViT layers difers with depth. In shallower layers, at-
tention is dispersed, primarily capturing edge-related scene details, 
while in deeper layers, attention is more concentrated, integrating 
contextual information. Our results suggest that transformer mod-
els may seek to minimize global over local uncertainty, the opposite 
of human strategy. Thus, human gaze may provide the model with 
information on which regions of the frame may be more relevant 
for resolving uncertainty, allowing more accurate learning. 

5.2 Layer Pruning in Vision Transformers 
Based on Similarity to Human Attention 

To understand how model attention overlaps with edges and fxa-
tions from the scene, we measure overall attention and compute 
the similarity between fxation maps and layer-specifc attention 
maps using the dot product described in Eq. 3. First, the total ViT 
attention is not notably diferent between low and high uncertainty 
test samples. In contrast, the total number of fxations and edges 
varies by uncertainty condition (Fig. 4A, B). In other words, high 
visibility (i.e., low uncertainty) results in a larger fxation area and 
more detected edges. Still, the model does not employ a diferent 
strategy in its attention overall. This suggests that the model may 
fnd fxation data benefcial for parsing uncertainty through better 
distributing its attention weights spatially in the scene. 

Following the observation that total model attention does not 
difer by visual uncertainty, we explored layer-specifc attention 
and its overlap with human fxation maps, as shown in Figures 4C, 
D. Observing a decline in this overlap beyond the ffth layer, we 
pruned the ViT model to its frst fve layers, creating a 5-layer model 
(5-ViT). We also tested a single-layer ViT (1-ViT), as a control. 

For both DR(eye)VE and VR dataset, the accuracy of the 5-ViT 
model is not signifcantly diferent than 12-ViT (Table 3), suggest-
ing that reducing the model’s complexity by half does not impact 
accuracy. However, reducing the model to a single layer (1-ViT) 
signifcantly lowers performance compared to 12-ViT across both 
datasets. This outcome demonstrates that models pruned to retain 
layers with the highest alignment to human attention can main-
tain or even enhance performance, especially in scenarios with 
smaller datasets like DR(eye)VE, where the 5-ViT model shows an 
improvement, though not statistically signifcant, over the 12-ViT 
model. 

5.3 Assessing the Impact of Human Eye Gaze on 
Task Performance 

Here, we investigate the contribution of human eye gaze informa-
tion to the task of predicting left or right turns. In particular, we 
evaluate whether gaze data during the premotor period sufces for 
accurately predicting a left or right turn. Our experimental setup 
includes a baseline model, a 12-layer Vision Transformer (12-ViT), 
processing the entire image frame. This model’s performance was 
benchmarked against two approaches: peripheral masking (Sec-
tion 3.4) and a dummy classifer that predicts the turn direction 
based on the assumption that drivers’ gaze towards the right or left 
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Figure 4: (A, B) Total, standardized sum of activations, by 
uncertainty split, for both datasets. We defne total activation 
in the baseline ViT as the sum of attention weights across 
layers and heads. Total fxation refers to the pixel-wise sum 
of fxation maps, a measure of the overall fxation area. Total 
edge activation refers to the pixel-wise sum of edge maps. (C, 
D) The similarity between attention weights across layers and 
fxation maps, using Eq. 3. Results are aggregated from all test 
samples on the best-performing, 12-layer baseline ViT. Line 
color shows the uncertainty split of the test samples, while 
line style shows whether ViT classifed the motor action 
correctly. Error band shows the 95% CI. 

side of the frame indicates the corresponding turn direction (see 
Appendix). 

Considering the task’s reliance on spatial scene information, 
we evaluated the efcacy of a dummy classifer in leveraging eye 
gaze data for turn prediction. The performance of this classifer 
established a benchmark for evaluating our proposed methods, 
achieving 50.48 ± 4.19% accuracy in the DR(eye)VE dataset and 64.67 
± 1.33% in the VR dataset (Table 2). These results indicate that gaze 
information alone can accurately predict driving decisions in the 
VR dataset for a signifcant proportion of cases. The efectiveness 
in the VR context is attributed to its streamlined design, featuring 
roads without complex navigational choices or directional changes, 
where drivers’ turn directions align with their gaze. Conversely, the 
real-world driving environment presents complex scenarios with 
external factors, such as pedestrians and other vehicles, thereby 
complicating the direct correlation between gaze direction and 
turning decisions observed in the VR environment. 

We also used peripheral masking to assess whether focusing 
solely on the driver’s fxation area within the scene yields enough 
information for accurate task completion. Across both datasets, 
our analysis revealed no signifcant diference in total accuracy be-
tween the full-frame baseline model (12-ViT) and the model trained 

Koorathota, Papadopoulos et al. 

on peripherally masked frames (Peripheral-ViT), accounting for 
both high and low uncertainty conditions (Table 3). These results 
suggest that while the fxation area is critical for classifcation, 
the surrounding scene holds valuable information as well. Conse-
quently, we opted for the FAX loss approach, which rewards the 
model for focusing more on the fxation area without neglecting 
the surrounding scene information. 

Figure 5: Boxplots displaying the test accuracy in high uncer-
tainty of the top performing models on the DR(eye)VE and 
VR datasets. 12-ViT and 5-ViT denote Vision Transformer 
models with 12 and 5 layers, respectively; 12-FAX and 5-FAX 
represent equivalent ViT models trained with the FAX loss, 
with the optimal � value in each case. The Mann-Whitney U 
test assesses statistical signifcance (* p < 0.05, ** p < 0.01, *** 
p < 0.001). 

Table 2: Top performing models based on test accuracy (mean 
± std). Models are compared against the baseline accuracy of 
the dummy classifer. 

Model High Uncertainty Low Uncertainty Total 

Dummy 49.73 ± 8.12 51.23 ± 4.80 50.48 ± 4.19 
12-ViT 68.77 ± 6.42 64.11 ± 7.36 66.44 ± 6.19VE

5-FAX 69.18 ± 4.44 70.82 ± 4.96 70.00 ± 4.14 

D
R(
ey
e)

5-ViT 70.55 ± 5.18 69.45 ± 6.68 70.00 ± 5.35 
12-FAX 76.58 ± 4.26 71.23 ± 4.03 73.90 ± 3.39 

Dummy 71.15 ± 1.66 58.38 ± 2.03 64.67 ± 1.33 
12-ViT 69.75 ± 6.50 60.47 ± 4.67 65.13 ± 5.34 

VR

5-ViT 71.68 ± 2.67 61.89 ± 2.47 66.71 ± 1.71 
5-FAX 73.38 ± 2.25 61.24 ± 1.70 67.31 ± 1.22

5.4 Gaze Integration Improves ViT Accuracy in 
Uncertain Conditions 

12-FAX 74.66 ± 1.72 61.25 ± 1.97 67.88 ± 1.31 

Next, we validate our fndings from 5.1 that human eye gaze can 
resolve uncertainty. To do so, we trained both the full-layer and 
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Table 3: Pairwise Mann-Whitney U Test Comparisons. 

DR(eye)VE VR 

Model 1 Model 2 Total High Uncertainty Total High Uncertainty 

p-value reject p-value reject p-value reject p-value reject 

12-FAX 12-ViT 0.005 True 0.007 True 0.064 False 0.002 True 
12-FAX 5-ViT 0.110 False 0.016 True 0.161 False 0.007 True 
12-FAX 5-FAX 0.044 True 0.003 True 0.405 False 0.326 False 
5-ViT 5-FAX 0.970 False 0.518 False 0.677 False 0.173 False 
12-ViT 5-ViT 0.161 False 0.378 False 0.570 False 0.850 False 
12-ViT 1-ViT 0.008 True 0.002 True 0.003 True 0.003 True 
12-ViT Periph.-ViT 0.000 True 0.000 True 0.006 True 0.140 False 
Dummy Periph.-ViT 0.677 False 0.621 False 0.058 False 0.096 False 

the ablated ViT models using the FAX loss to drive the model’s 
attention towards areas aligned with human gaze. For both datasets, 
the top performing models include: 12-FAX, 5-FAX, 5-ViT, 12-ViT 
(Fig. 5). In the DR(eye)VE dataset, the 12-FAX model demonstrated 
a signifcant accuracy improvement over the 12-ViT model, with a 
mean increase of 7.46%. Furthermore, the 12-FAX model exhibited a 
distinct, though not statistically signifcant, accuracy improvement 
over the 5-ViT model and a signifcant improvement over the 5-
FAX model. Notably, in high uncertainty conditions, the 12-FAX 
model consistently outperformed the 12-ViT and 5-ViT models, 
underscoring the benefts of gaze integration. These results are 
consistent with our previous observations that human eye gaze 
contributes to resolving uncertainty and enhances ViT performance, 
especially in high uncertainty conditions. 

In the VR dataset, performance diferences among models were 
not statistically signifcant in low uncertainty conditions. However, 
in high uncertainty scenes, the 12-FAX model signifcantly outper-
formed both the 12-ViT and 5-ViT models, further highlighting the 
importance of human gaze in resolving uncertainty. Additionally, 
there is no signifcant diference in accuracy between 5-FAX and 
5-ViT across both datasets and all levels of uncertainty (Table 3), 
suggesting that shallower networks do not beneft as signifcantly 
as the full-layer model from the integration of human gaze data. 
Overall, our results support the conclusion from 5.1 that human 
gaze enhances the model’s attention, thereby improving ViT model 
performance in uncertain conditions. 

5.5 FAX Loss Aligns Model Attention with 
Human Gaze 

Lastly, we present qualitative results displaying the average atten-
tion map across all heads for each layer of the ViT model with 
varying � values, from � = 0 (where only L��� is used) to � = 1 
(where only L� �� is used), as illustrated in Fig. 6. An increase in 
� (from left to right in the fgure) correlates with attention maps 
increasingly resembling human fxation patterns, except at � = 1, 
where the model disperses attention across the frame to mimic hu-
man fxations. In the earlier layers, attention is distributed globally 
across the image, while subsequent layers progressively shift to 
more precise attention regions correlating with human fxations, es-
pecially at optimal � settings, such as 0.2 or 0.8. Notably, at � = 0.8, 

which aligns with the highest accuracy in the DR(eye)VE dataset, 
there is the highest alignment between attention maps and hu-
man fxation data. To quantitatively support these observations, 
we calculated the Intersection over Union (IoU) metric between 
attention and human fxation maps for all � values (Fig. 6 D). The 
IoU was calculated by converting heatmaps to binary masks using 
a threshold of 0.4, computing the intersection and union of these 
masks, and averaging the IoU across all heads and layers for all test 
set samples of the two datasets. 

The results demonstrate that ViT, when trained with FAX loss 
at an optimal � value, can adopt an attention strategy similar to 
humans. By integrating gaze, ViT learn to focus on specifc regions, 
reducing local uncertainty without compromising their broader 
receptive feld. This signifcantly enhances model performance in 
driving contexts and could also apply to other areas where trans-
formers are employed for image and video tasks. 

6 Limitations and Future Work 
While our study demonstrates the potential of integrating human 
gaze into Vision Transformers (ViT) for driving decision-making 
under uncertainty, several limitations warrant further investigation. 
Currently, our approach predicts turning decisions based on single 
frames. However, driving is inherently a dynamic task that requires 
processing sequences of frames to understand the broader context. 
Expanding our model to handle dynamic video data could enhance 
its applicability and performance in real-world scenarios. Future 
research should explore incorporating temporal information to 
better align the model with the sequential nature of human decision-
making. 

Moreover, while this work focuses on driving, the integration 
of human gaze has broader implications. Future studies should ex-
plore applying this approach in other domains where gaze data 
is valuable, such as medical imaging. For instance, training mod-
els on datasets that include radiologists’ gaze data could enhance 
diagnostic accuracy and decision-making in clinical contexts [13]. 

7 Conclusion 
Our paper establishes the critical role of human eye gaze in enhanc-
ing Vision Transformer (ViT) models for driving decision-making 
under uncertainty. A systematic comparison between human and 
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Figure 6: Training with FAX loss aligns model attention with human gaze. This fgure shows the impact of FAX loss on the 
ViT model’s attention maps for test set samples. (A) Input frame with overlaid human fxation map. (B) Human fxation data 
aligned to ViT attention map dimensions. (C) Average attention maps across all heads for each ViT layer, for distinct � values 
in FAX loss (Eq. 5), showing increasing resemblance to human fxation patterns with higher � values. (D) Intersection over 
Union (IoU) metric between attention and fxation maps for the test set samples for all � values, quantifying alignment. These 
results demonstrate that optimal � values in FAX loss (e.g., � = 0.2, 0.8 for DR(eye)VE and � = 0.1, 0.2 for VR) lead to attention 
maps better resembling human fxation area, indicating the model’s ability to predict human gaze in driving scenarios. 

model attention characteristics provided the groundwork for this 
integration. We introduced the fxation-attention intersection (FAX) 
loss, a novel methodology for incorporating gaze data into ViT. No-
tably, the application of FAX loss led to a signifcant performance 
improvement in ViT, particularly under high uncertainty conditions. 
These advancements demonstrate the potential of human-guided 
transformer models to refne driver behavior analysis and improve 
human-vehicle interaction, with broader implications for human-
centered AI systems and human-computer interaction. 
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A Appendix 

A.1 Comparative Performance of Models 
Comparative performance of all Vision Transformer (ViT) model 
variants on the VR dataset and on the DR(eye)VE dataset under 
both low and high uncertainty combined (Table 5). Metrics include 
test accuracy (%), Area Under the Receiver Operating Characteristic 
Curve (AUC), and F1-Score. Results are presented as mean ± stan-
dard deviation computed from 10 independent training runs with 
distinct data splits. Model variants include 1-, 5-, and 12-layer ViT 
(denoted as 1-ViT, 5-ViT and 12-ViT) trained on image data using 
binary cross entropy (BCE) loss, and equivalent models trained 
with FAX loss (denoted as 1-FAX, 5-FAX and 12-FAX). Peripheral-
ViT and Random Peripheral-ViT denote the baseline 12-layer ViT 
trained with ablated input, as outlined in the ’Proposed Methods’ 
section. For the models trained with FAX loss, eye gaze was not 
used during inference. Instead, we loaded the trained weights to 
the vanilla ViT architecture and proceeded with predictions on the 
test data. 

Figure 7: Adapted from [14]. Overview of how motor events 
were detected and premotor period is defned for the VR 
dataset. (A) We simultaneously collected neural data from 
EEG, autonomic measures using ECG, eye movements and 
pupil dynamics using a VR-headset embedded eye tracking 
system, and motor actions using a steering wheel. (B) Par-
ticipants (n=10) performed 3 virtual reality driving task ses-
sions, requiring boundary avoidance under time pressure 
and changing visual uncertainty. Their motor actions were 
recorded from the steering deviation as they were navigat-
ing a city environment. We analyzed direction-independent 
(i.e., absolute) steering deviation). Motor actions belong to 
a global trial with a set level of visual fog (opacity) in the 
environment that participants drove in. (C) The start of each 
motor action was marked using a peak detection method 
on the steering wheel data since this was most relevant to 
navigating the boundary avoidance task. The premotor peri-
ods of interest for this study were a fxed, 3-second interval 
before each event, and the intensity of the motor activity 
was determined by the post-event steer angle. Blue and red 
circles indicate events with low and high motor intensity, 
respectively. 

A.2 Fixation Map and Edge Detection 
The fxation maps for both VR and DR(eye)VE datasets are gen-
erated by aggregating fxation data spanning a diferent duration 
of the premotor period. The fxation map for DR(eye)VE datasets 
was generated by utilizing the fxation coordinate for 10 frames, 
which is 0.4 seconds, whereas the VR dataset uses fxation data 
for 3 seconds. The reason for such a diference was, the fxation 
map for DR(eye)VE tends to have a larger fxation area due to the 
number of uncertain factors to consider. A shorter duration in this 
case generates a fxation map with a reasonable size. 

The fxation map is generated based on the dimension of the 
original frame. The gaze coordinates for the VR, in particular, need 
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Table 4: Confguration of top performing models. 

Model Architecture Layers Loss 
VR 

� 

DR(eye)VE 

12-ViT ViT 12 CrossEntr. - -
5-ViT ViT 5 CrossEntr. - -
12-FAX ViT 12 FAX 0.1 0.8 
5-FAX ViT 5 FAX 0.2 0.2 

to be re-scaled to match the frame dimension before the fxation 
map gets generated. The generation of the fxation map starts with 
computing a 2D Gaussian matrix with pre-defned variables. These 
variables are being used to further re-scale the gaze coordinate so 
that the coordinate aligns with the Gaussian matrix. The fxation 
map is generated by adding up the portion of the Gaussian matrix 
that corresponds to those gaze coordinates. There is a duration 
parameter available that can be used to adjust the weight of the 
gaze coordinate. The fxation map for the DR(eye)VE dataset is 
generated in the same fashion. 

For edge detection, the original frame frst goes through color 
conversion from color to grayscale. Afterward, Gaussian smoothing 
is performed on the grayscale image with a 3x3 kernel. The purpose 
of this step is to improve the edge detection result. This blurred im-
age fnally feeds into the Canny edge detector with a lower thresh-
old of 25 and an upper threshold of 50. The specifc implementation 
details are provided in the process_driving_video.py. 

A.3 Peripheral Masking 
In our processing pipeline, we enhance the fxation heatmap to en-
compass a broader peripheral area, which we subsequently employ 
for generating masks. This augmentation of the heatmap accounts 
for the fact that peripheral regions can provide valuable insights 
into what is visually perceived around the central foveated point, 
as captured by eye tracking systems. 

To achieve this, we perform a dilation operation on the fxation 
heatmap. Dilation involves expanding regions of high intensity, 
efectively enlarging the areas of interest. The dimensions of the 
kernel used for dilation are set empirically to 30x30 pixels within 
the context of a 224 × 224 input frame. This choice aligns with the 
approximate 30 degrees of visual angle that humans perceive in 
the mid-peripheral region. The specifc implementation details are 
provided in the create_peripheral_mask.py. 

A.4 Dummy Classifer 
The dummy classifer is based on the simple assumption that a 
driver’s gaze direction within an image frame -either right or left-
indicates the intended turning direction. This classifer splits each 
image into two equal halves (left-right) and calculates the sum of 
pixel values for each side. A prediction for a right or left turn is 
then made based on which half of the image has a greater sum of 
pixel values, suggesting that a higher sum indicates the driver’s 
focus area and, by extension, the turn direction. This approach 
establishes a baseline for comparison, illustrating the extent to 
which the spatial information inferred from gaze can address the 

task. Consequently, it allows for an evaluation of the enhancements 
brought by integrating gaze data into ViT models. The specifc 
implementation details are provided in the dummy_classifier.py. 

A.5 Implementation Details 
The experiments were conducted on a Lambda Labs Vector Ma-
chine, equipped with Threadripper Pro 3990X v4 @ 4.3GHz (64 
cores), 128 GB DDR4 RAM and 2x NVIDIA GeForce RTX 3090 (24 
GB VRAM each). The implementation was carried out in PyTorch, 
using pretrained weights from ImageNet. The dataset was split into 
training, validation, and test sets with a ratio of 65:15:20 for the 
virtual reality (VR) and 68:12:20 for the real-world (DR(eye)VE) 
datasets to accommodate diferences in dataset sizes. We report the 
mean and standard deviation of the test accuracy resulting from 
10 distinct splits of our datasets for each type of run. The training 
was performed using the SGD optimizer with an initial learning 
rate of 0.001. The learning rate was adjusted using a scheduler to 
ensure convergence. Models were trained for a maximum of 100 
epochs, with early stopping based on the validation loss (20 epochs) 
to prevent overftting. For all models, gaze data was not used during 
inference. Trained weights were instead imported into the vanilla 
ViT architecture for predictions on the test dataset. 
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Table 5: Performance metrics of ViT variants on the VR and DR(eye)VE datasets under both low and high uncertainty combined, 
showing test accuracy (%), AUC, and F1-Score as mean ± standard deviation from 10 training runs with distinct data splits. 

VR Dataset DR(eye)VE Dataset 

Model � Accuracy (%) AUC F1 Accuracy (%) AUC F1 

Dummy - 64.67 ± 1.33 0.65 ± 0.01 0.62 ± 0.02 50.48 ± 4.19 0.49 ± 0.04 0.60 ± 0.05 

1-ViT - 61.74 ± 1.55 0.62 ± 0.02 0.65 ± 0.02 58.22 ± 4.21 0.57 ± 0.05 0.62 ± 0.08 
5-ViT - 66.71 ± 1.62 0.67 ± 0.01 0.65 ± 0.04 70.00 ± 5.08 0.70 ± 0.05 0.72 ± 0.07 
12-ViT - 65.13 ± 5.07 0.65 ± 0.05 0.61 ± 0.20 66.44 ± 5.87 0.66 ± 0.05 0.69 ± 0.08 

12-FAX 0.01 66.17 ± 1.09 0.66 ± 0.01 0.67 ± 0.03 63.22 ± 6.03 0.63 ± 0.06 0.65 ± 0.10 
» 0.1 67.88 ± 1.24 0.68 ± 0.01 0.70 ± 0.02 67.47 ± 4.84 0.66 ± 0.06 0.72 ± 0.05 
» 0.2 67.36 ± 2.00 0.67 ± 0.02 0.68 ± 0.04 64.66 ± 8.00 0.64 ± 0.08 0.67 ± 0.15 
» 0.8 65.80 ± 1.98 0.66 ± 0.02 0.68 ± 0.02 73.90 ± 3.22 0.74 ± 0.03 0.76 ± 0.05 
» 1 49.73 ± 1.53 0.50 ± 0.00 0.13 ± 0.27 46.44 ± 3.04 0.50 ± 0.00 0.26 ± 0.32 

5-FAX 0.01 66.11 ± 1.12 0.66 ± 0.01 0.66 ± 0.02 70.27 ± 4.04 0.70 ± 0.03 0.72 ± 0.07 
» 0.1 66.53 ± 1.58 0.67 ± 0.02 0.67 ± 0.02 69.04 ± 5.27 0.69 ± 0.05 0.69 ± 0.12 
» 0.2 67.31 ± 1.16 0.67 ± 0.01 0.67 ± 0.03 70.00 ± 3.93 0.70 ± 0.03 0.72 ± 0.06 
» 0.8 63.83 ± 2.56 0.64 ± 0.03 0.63 ± 0.08 66.51 ± 3.99 0.66 ± 0.04 0.68 ± 0.06 
» 1 49.83 ± 0.42 0.50 ± 0.00 0.25 ± 0.31 48.08 ± 4.53 0.50 ± 0.01 0.27 ± 0.33 

1-FAX 0.01 58.89 ± 4.55 0.59 ± 0.05 0.58 ± 0.15 62.05 ± 4.56 0.61 ± 0.04 0.67 ± 0.06 
» 0.1 51.63 ± 1.51 0.51 ± 0.02 0.54 ± 0.26 61.92 ± 4.41 0.61 ± 0.04 0.66 ± 0.07 
» 0.2 50.76 ± 0.81 0.51 ± 0.01 0.53 ± 0.26 61.16 ± 5.95 0.61 ± 0.04 0.60 ± 0.13 
» 0.8 50.42 ± 0.62 0.50 ± 0.00 0.53 ± 0.27 51.64 ± 4.18 0.51 ± 0.02 0.38 ± 0.28 
» 1 49.88 ± 0.29 0.50 ± 0.00 0.33 ± 0.33 46.85 ± 3.61 0.50 ± 0.01 0.17 ± 0.26 

Peripheral-ViT - 63.38 ± 1.30 0.63 ± 0.01 0.63 ± 0.05 51.23 ± 4.13 0.51 ± 0.04 0.54 ± 0.10 
Random Periph.-ViT - 52.90 ± 1.10 0.53 ± 0.01 0.53 ± 0.08 48.42 ± 4.01 0.48 ± 0.04 0.50 ± 0.06 
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