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SUMMARY

In collaborative environments, a deep understanding of multi-human teaming dynamics is essential for opti

mizing performance. However, the relationship between individuals’ behavioral and physiological markers 

and their combined influence on overall team performance remains poorly understood. To explore this, we 

designed a triadic human-collaborative sensorimotor task in virtual reality (VR) and introduced a predictabil

ity metric to examine team dynamics and performance. Our findings reveal a strong connection between 

team performance and the predictability of a team member’s future actions based on other team members’ 

behavioral and physiological data. Contrary to conventional wisdom that high-performing teams are highly 

synchronized, our results suggest that physiological and behavioral synchronizations among team members 

have a limited correlation with team performance. These insights provide a quantitative framework for 

understanding multi-human team dynamics, paving the way for deeper insights into team dynamics and 

performance.

INTRODUCTION

Teamwork is a critical form of human interaction, productivity, 

and survival. From world championship sports teams to intimate 

working groups, from ancient tribal rituals to modern urban plan

ning, teaming has consistently been a critical and innate element 

of human behavior. Without teaming, our society would likely 

look very different, lack rich and diverse cultures, lack marvels 

of engineering and construction, and have limited ground

breaking scientific advancements. Studying the fundamental 

mechanisms behind human teaming is essential to understand

ing and improving collective human intelligence.

Games and collaborative tasks have been used as major plat

forms to study multi-human teaming. From role-playing to battle 

arena games, many previous studies have shown that multi

player online games have great potential for studying team dy

namics,1 leadership in multi-human teaming,2,3 and individual 

behavior within teams.4 However, it is still unclear whether the in

sights gained from simple game-based studies can be general

ized to more complex, high-stakes team interactions and team 

performance.

In addition to computer games, real-world scenarios, such as 

simulated hospitals with surgical teams and teams in 

manufacturing companies, have been used to study team per

formance and effectiveness.5,6 Most of these previous studies 

have used qualitative methods such as interviews,6 question

naires,6,7 and surveys.5,8 While these qualitative studies can 

help us gain insights into how some task-related factors can 

impact team performance, these methods are prone to bias 

due to subjective reporting and are often difficult to reproduce. 

Therefore, the additional consideration of quantitative evaluation 

metrics to understand team performance remains essential but 

largely unexplored.

With the development of virtual reality (VR), more environmen

tally controlled team-based studies have been conducted.9–12

VR provides an immersive experience while reducing external 

distractions. The virtual environment also has the potential to 

provide realistic simulations with well-controlled delivery and 

simultaneous recording of events and interactions. However, 

few VR experiments have involved real-time synchronization 

and multi-modal data collection of multi-person teams. Most 

team-based VR experiments are conducted with a single human 

performing collaborative tasks with other simulated computer 

agents instead of working in the simulation with other peo

ple.10,11 These experiments limit the possibility of studying 

multi-human teaming.

Through studying human teaming in various tasks, previous 

research has highlighted that physiological synchrony among 

team members is positively correlated with team perfor

mance.13–16 Conversely, other studies have suggested a nega

tive correlation between behavioral synchrony and team perfor

mance.17,18 The preceding literature lacks studies that 
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comprehensively correlate performance with both behavioral 

and physiological synchrony in complex teaming tasks. The 

interpretation of such correlations of team performance with 

behavioral synchrony and physiological synchrony remains un

clear and incomplete. Therefore, we hypothesized that a 

comprehensive understanding of the balance between physio

logical and behavioral synchrony is critical for enhancing team 

performance, especially in tasks that demand high levels of 

cooperation, coordination, and collaboration.

In this work, we developed a framework to study multi-human 

teaming in a VR environment by quantitatively analyzing multi- 

modal physiological and behavioral data from all team members. 

We constructed an immersive sensorimotor task requiring three 

participants to collaboratively navigate a spacecraft, capturing 

multi-modal data from all participants (Videos S1, S2, S3, S4, 

S5, and S6). To identify potential biomarkers of team perfor

mance, we employed two computational approaches: inter-sub

ject correlation (ISC) and predictability. ISC, traditionally linked to 

team performance metrics,19,20 was found to correlate with team 

performance only under specific measurements in our complex 

collaborative task. To address these limitations, we proposed 

a predictability approach, using a deep learning model to fore

cast one team member’s remote controller actions based on 

their teammates’ physiological and behavioral data. This predic

tive model revealed a significant correlation between the predict

ability of team members’ actions and team performance, sug

gesting that predictability can serve as a robust biomarker for 

understanding and enhancing team dynamics in collaborative 

tasks.

RESULTS

Virtual reality paradigm for studying team dynamics

To test the correlation between team performance and physio

logical and behavioral synchrony among team members, we 

designed a multi-human team-based virtual reality (VR) task 

that we refer to as the Apollo Distributed Control Task 

(ADCT). Our task is inspired by the renowned Apollo 13 reentry 

mission and its extended cinematic story.21,22 The Apollo 13 

mission is considered one of the history’s most ‘‘successful fail

ures’’ in that three astronauts exhibited extraordinary teamwork 

while operating different controls of a spacecraft collaboratively 

to safely navigate back to Earth after an oxygen tank exploded. 

The ADCT is a team-based version of a boundary avoidance 

task (BAT), which is a sensorimotor task requiring participants 

to navigate within a predefined area while avoiding boundary 

violations. Previous work has shown that BAT task induces 

arousal changes in individuals, affecting cognitive control and 

performance.23 The ADCT has the following features built into 

its design and construction: 1) it is a challenging enough coop

erative and collaborative task to trigger complex team dy

namics; 2) the experiment was conducted repetitively with a 

consistent group of participants; 3) the task state and behavior 

of subjects are synchronized in real-time with simultaneously 

recorded multi-modal physiological signals; and 4) team perfor

mance is quantitatively assessed by evaluating the contribu

tions of all team members, where local performance is 

measured in relation to short-term goals, and global perfor

mance encompasses high-level planning tragedies. Figure 1

summarizes the ADCT.

Specifically, the ADCT is performed by a triad team in VR 

(Figure 1A). Each team member, as a co-pilot, has partial obser

vation of the exterior space environment through uniquely posi

tioned spacecraft windows, each with different viewing points. 

Each co-pilot controls a single degree of freedom of the space

craft’s movement, such as yaw, pitch, or thrust (Figure 1B). The 

team’s goal is to collaboratively navigate the spacecraft back to 

Earth by following a predefined reentry path. The transparent red 

rings mark the boundary of the path, and the team must reach 

Earth within a limited time. Therefore, failing to pass all rings 

with sufficient speed results in trial failure. Teams are monetarily 

incentivized to complete as many trials successfully as possible. 

If they cannot return to Earth in time, they must navigate the entry 

path to get as close to Earth as possible.

While the teams performed the ADCT, we simultaneously 

collected electroencephalography (EEG), pupillometry, eye 

gaze, speech, and remote controller inputs from all participants 

(Figure 1C). Each team participated in three experimental ses

sions. The roles of participants were randomly assigned for 

each session, but the team members remained the same across 

all sessions. Each experimental session included 45 trials, each 

consisting of 15 rings. Team performance was quantitatively 

evaluated by the team’s total number of ring obstacles success

fully navigated.

Team performance improves across experimental 

sessions

We first analyzed performance dynamics across three experi

mental sessions to investigate how physiological and behavioral 

synchrony among team members relates to team performance. 

As shown in Figure 1D, the total number of rings passed by 

each team increased monotonically over the experimental ses

sions, indicating a steady improvement in overall team perfor

mance. Repeated measures analyses of variance (ANOVA) re

vealed significant performance differences across sessions 

(F(2;32) = 11:99;p < 0:001). Post-hoc comparisons with Bon

ferroni correction showed a substantial improvement in perfor

mance from Session 1 to Session 3 (p < 0:001). Similarly, the 

averaged trial performance also improved significantly over 

time (Figure 1E, F(2; 32) = 13:17; p < 0:01). The performance 

significantly increased from Session 1 to Session 3 (p < 0:001). 

These findings suggest that team performance improved consis

tently as participants engaged in more task sessions. This steady 

enhancement highlights the potential for learning and adaptation 

in team dynamics through repeated collaborative tasks in im

mersive environments.

Subjective ratings and multi-modal inter-subject 

synchrony

After each experimental session, all co-pilots provided subjec

tive ratings of their familiarity with and helpfulness toward other 

team members (see Post-Task Survey in post task survey for de

tails). Analyzing these ratings allows us to track how familiarity 

and helpfulness change over time and investigate the potential 

impact of team members’ perceptions on team performance. 

Surprisingly, the helpfulness rating shows a consistent decrease 
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Figure 1. ADCT environment and team performance 

(A) An illustration of the ADCT virtual environment. The team’s goal is to control the spacecraft, passing all red rings and arriving back on Earth within the specified 

time limit. 

(B) The view of three co-pilots with respect to a ring obstacle and the degree of freedom controlled by each role. The three co-pilots are YawPilot, PitchPilot, and 

ThrustPilot. Each participant was equipped with a VR headset, a microphone, a remote controller, and an EEG headset. 

(C) Illustration of data modalities collected from all co-pilots. The red bars on the spacecraft’s horizontal and vertical trajectories represent the relative location of 

ring obstacles. The uppermost section illustrates the cross-section of a spacecraft’s position with respect to a ring. 

(legend continued on next page) 
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across the experimental sessions (Figure 2A, repeated measures 

ANOVA, F(2;34) = 9:33;p < 0:001). In contrast to the decreasing 

helpfulness scores, the average familiarity rating across teams 

increases monotonically (Figure 2B, F(2; 34) = 21:42; p < 

0:001). This pattern suggests that as team members become 

more familiar with each other, their perceptions of helpfulness 

may become more critical or nuanced.

Next, we analyzed the dynamics of team synchronization by 

calculating the inter-subject correlation (ISC) across various 

data modalities. ISC is a widely recognized metric for evalu

ating the synchrony among individuals performing identical 

tasks14,24–27 or collaborative tasks.28,29 This work analyzed 

the ISC among three co-pilots based on their pupil dynamics, 

EEG, remote controller inputs, and speech events. As illus

trated in Figure 2C, pupil size synchrony remains relatively sta

ble across sessions (F(2;28) = 0:65; p = 0:53). Interestingly, 

EEG ISC is maximized in the second experimental session. 

However, variations in EEG ISC did not achieve statistical sig

nificance (Figure 2D, F(2; 18) = 1:51; p = 0:25). Remote 

controller actions and speech events also remain stable along 

the three experimental sessions (Figures 2E and 2F; remote 

controller actions synchrony F(2; 32) = 1:10; p = 0:34; 

speech event synchrony F(2;14) = 0:23;p = 0:80). These find

ings suggest that increasing experimental sessions has a 

limited impact on synchronizations among team members’ 

behavioral or physiological data.

Inter-subject synchrony and its correlation with team 

performance

Inter-subject synchrony (ISC) is often hypothesized to be corre

lated with team performance. Previous studies have demon

strated a positive relationship between team performance and 

synchrony in brain and pupil dynamics.14,19,20,30 However, 

whether synchrony among more than two team members corre

lates with overall team performance remains unexplored. To 

address this, we employed generalized linear mixed-effects 

models (GLMMs) to examine the relationship between inter-sub

ject synchrony across multiple modalities and team performance 

(see generalized linear mixed-effect model for details).

Our findings reveal that behavioral synchrony, such as 

controller action synchrony and speech event synchrony, signif

icantly correlates with team performance (Figure 2G). Interest

ingly, speech event synchrony among team members is posi

tively correlated with team performance, suggesting that 

verbal communication enhances high-level task outcomes 

(β = 1:63; P = 0:039). In contrast, controller action synchrony 

is negatively correlated with team performance, possibly 

reflecting a detrimental effect of over-coordination on 

individual autonomy in control actions (β = − 1:01; P = 

0:072). Physiological synchrony, however, did not show a 

significant correlation with team performance (pupil size syn

chrony, β = − 0:73; P = 0:328; EEG synchrony, β = 0:11;

P = 0:845). These results show that behavioral synchrony is a 

key predictor of team performance in triad teams, highlighting 

a previously overlooked factor in team performance research.

Quantifying team predictability using multi-modal 

physiological and behavioral data

A high-performing team consists of members who consistently 

engage in predictable interactions.31 This predictability results 

from a deep understanding and harmony within the team, mak

ing it easier for team members to anticipate one another’s ac

tions and reactions to each other. In this study, we used a 

multi-head attention model to quantitatively measure how the 

future actions of a teammate could be predicted from their team

mates’ physiology and behavior.

First, we epoched multi-modal physiological and behavioral 

data from 1.5 s before each ring-passing event (Figure 3A). The 

model received inputs from the initial 1 s of this epoch, where 

each input included the spacecraft’s trajectory and the behav

ioral and physiological data of two co-pilots. The model’s output 

was the generated prediction of the constructive 0.5-s controller 

action of the third co-pilot (0.5 s before passing the ring). On 

average, co-pilots made about 0.3 remote controller actions in 

that time period. We evaluated predictability at the team level 

by averaging the individual predictability scores across the three 

co-pilots. Since speech event synchrony significantly correlates 

with team performance (P < 0:05), we excluded speech event 

data from the model input to avoid potential bias. (The supple

mentary materials include results from a model incorporating 

speech input for comparison.) By analyzing team predictability, 

we demonstrate its potential as a biomarker significantly associ

ated with overall team performance.

This model architecture is designed to integrate multi-modal 

data with varying temporal and spatial characteristics 

(Figure 3B). The inclusion of cross-modal attention layers en

sures that dependencies between modalities are effectively 

captured, particularly when aligning trajectory information 

across diverse behavioral and physiological data sources. Addi

tionally, self-attention layers within each modality help extract 

meaningful intra-modal patterns, such as EEG synchrony and 

pupil size dynamics. By combining the outputs from all 

modalities, the feedforward network synthesizes complemen

tary features, creating a unified representation that encapsu

lates the interactions between physiological, behavioral, and 

environmental data.

The cross-attention mechanism further enhances this repre

sentation by linking the fused multi-modal features with the 

target modality, improving the accuracy of controller action 

predictions. This architecture leverages the unique contribu

tions of each modality while ensuring robustness against 

noisy data. Moreover, its modular and adaptable design 

makes it well-suited for analyzing our complex multi-modal 

experiment.

We hypothesized that the predictability of team members’ 

future controller actions would significantly correlate with team 

(D and E) Team performance across three experimental sessions. The performance is measured by the number of rings passed. Each dot represents as mean of 

one team (N = 17). Bars indicate the average across teams. Asterisks indicate statistically significant differences, defined as ∗ ∗ ∗P < 0:001, while ns indicates the 

difference is not significant (repeated measures ANOVA with Bonferroni correction). (D) Total number of rings passed by each team in each session. (E) Averaged 

the number of rings passed by each team in each trial in three sessions.
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performance. Consequently, we expected that the predictability of 

each team’s actions would change across experimental sessions. 

As shown in Figure 3C, predictability changes slightly as the 

number of experimental sessions increases (F(2; 10) = 0:12;

P = 0:888). A detailed analysis of predictability and team perfor

mance is provided in the next section.

Team action predictability as a performance biomarker

We identify an intriguing finding that predictability serves as a 

critical biomarker for team performance (Figure 3D, β = 3:20;

P < 0:001). Specifically, a positive correlation between predict

ability and team performance suggests that when team mem

bers better anticipate each other’s future actions, overall team 

A

D E F

G

CB

Figure 2. Subjective rating and multi-modal synchrony 

(A–F) Subjective ratings and synchrony among team members based on different physiological or behavioral data modalities across experimental sessions. Each 

dot is represented as a mean of one team, and the bars show the average across teams. Asterisks indicate statistically significant differences, defined as ns, not 

significant, ∗P < 0:05;∗ ∗ ∗P < 0:001. Repeated measures ANOVA with Bonferroni correction. (A) Helpfulness rating of team members (N = 17). (B) Familiarity rating 

of team members (N = 17). (C) Pupil size synchrony among team members (N = 14). (D) EEG synchrony among team members (N = 9). (E) Remote controller action 

synchrony among team members (N = 17). (F) Speech event synchrony among team members (N = 7). 

(G) Multi-modal synchrony and its correlation with team performance. Blue arrows indicate negative correlations, while red arrows indicate positive correlations. 

Asterisks indicate statistically significant differences, defined as ns, not significant, ⋅P < 0:1;∗P < 0:05. Generalized linear mixed-effects models.
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performance improves. This enhanced predictability may allow 

teams to execute more efficient joint strategies, leading to better 

outcomes, such as successfully passing more rings.

One possible explanation for this relationship is that increased 

predictability reduces uncertainty in decision-making, allowing 

team members to allocate cognitive and motor resources more 

effectively. In highly coordinated teams, members develop an 

implicit understanding of their partners’ tendencies, minimizing 

reaction delays and facilitating smoother task execution.31,32

Team performance and subjective ratings of team 

members

Familiarity among team members has been demonstrated to be 

positively correlated with team performance.15,33 Our experi

ment, focused on a collaborative distributed control task, 

observed a similar pattern (Figure 4). Specifically, familiarity 

among co-pilots is positively correlated with team performance, 

indicating that as familiarity increases, teams perform better on 

both sub-tasks and in achieving their long-term goals (β = 

0:18; P = 0:074). This finding emphasizes the importance of 

building familiarity within teams, as it appears to enhance their 

ability to work cohesively and effectively toward shared goals.

Interestingly, the helpfulness rating of team members is 

significantly negatively correlated with team performance 

(β = − 0:32; P < 0:001). This suggests that higher helpfulness 

ratings may reflect a greater reliance on teammates for support, 

which could reduce individual autonomy or efficiency, poten

tially detracting from the overall team performance. 

Conversely, lower helpfulness ratings may indicate a more 

balanced contribution from all members, optimizing team effi

ciency towards achieving shared objectives. Together, the sub

jective ratings of familiarity and helpfulness reveal a nuanced 

relationship between team dynamics and performance. While 

familiarity fosters cohesion and shared understanding, percep

tions of helpfulness may introduce dynamics that negatively 

impact team performance. These insights highlight the com

plex interplay between subjective perceptions and perfor

mance, offering valuable guidance for designing and optimizing 

collaborative teams in distributed control tasks.

DISCUSSION

In this study, we conducted a team-based collaborative virtual 

reality (VR) experiment and demonstrated a multi-modal 

biomarker that directly correlates with team performance. Spe

cifically, we demonstrated that a biomarker measuring the pre

dictability of teammate behavior is better correlated with team 

performance. This biomarker is derived from integrating multi- 

modal physiology and behavior of teammates to predict the 

future behavior of the remaining (i.e., left out) team member. 

Our predictability biomarker challenges the conventional wis

dom that physiological and behavioral synchrony is a robust 

marker of a high-performing team.13,15–18

Simultaneously collecting and analyzing multi-modal data is 

crucial for understanding team performance and dynamics. In 

contrast to executing simple tasks individually, collaborative 

tasks involve complex dynamics and interactions among team 

members. Various data modalities, including pupillometry, 

EEG, speech, and other physiological or behavioral data, have 

been analyzed individually but not in combination.34–37 We 

have developed a cross-modal multi-head attention predictive 

model that is capable of simultaneously analyzing multi-modal 

data from multiple team members (Figure 3B). This model inte

grates inputs from multiple data modalities, enabling not only 

the prediction of future actions of individuals but also the identi

fication of a biomarker that is inversely related to overall team 

performance.38 This result further demonstrates that different 

physiological and behavioral measures provide unique informa

tion that needs to be integrated to construct biomarkers that bet

ter relate to performance.

Our results revealed a positive correlation between our pre

dictability biomarker and team performance. Aligning with the 

common belief that high-performance teams benefit from pre

dictable actions among members,31 our findings suggest that 

this is expressed in teammate physiology in a way that leads 

to enhanced coordination and alignment for achieving higher 

performance (Figure 4). While the synchrony of individual modal

ities among co-pilots showed marginal or insignificant correla

tion with team performance, combining multi-modal data as 

input to the predictive model revealed that the predictability of 

team members’ future actions is a stable and reliable biomarker 

of team performance. This highlights the potential of leveraging 

predictability as a key metric for understanding and improving 

team dynamics.

We have focused primarily on using predictability as a key in

dicator of team performance in collaborative tasks involving mul

tiple humans. A pivotal question arising from our research is how 

we may practically leverage the predictive abilities of team mem

bers to enhance team dynamics and performance. This capa

bility can facilitate collaboration between humans or, potentially, 

teaming between humans and artificial intelligence (AI) 

agents.39–41 Our findings lay the groundwork for innovative 

teaming strategies, fostering enriched and more productive col

laborations. Another important direction for future work is to 

investigate how task difficulty levels impact team decision-mak

ing, as well as the physiological and behavioral responses of 

Figure 3. Predictability of each team member’s actions as a biomarker of team performance 

(A) An illustration of a single epoch of the multi-modal data. Each epoch is relative to a ring, and we divided each epoch into input and output for the predictive 

model. The predicted action of an individual is based on a generative model that uses the behavioral and physiological data of the other two co-pilots. Pre

dictability is evaluated by computing the correlation of the true action of a co-pilot with the model-predicted action. 

(B) Multi-head attention modal structure. The cross-modal attention layers take the spacecraft trajectories and physiological or behavioral data. 

(C) Team predictability across three experimental sessions. Each dot represents as mean of one team, and the bars show the average across teams (n = 10). ns, 

not significant (repeated measures ANOVA with Bonferroni correction.). 

(D) Correlation between team performance and predictability. The red arrow indicates positive correlations. Asterisks indicate statistically significant differences, 

defined as ∗ ∗ ∗P < 0:001 (generalized linear mixed-effects models.).
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individuals.42,43 Understanding these effects could provide 

deeper insights into how teams adapt under varying cognitive 

demands and environmental constraints, shedding light on 

whether increased difficulty leads to heightened physiological 

synchrony, shifts in communication dynamics, or changes in col

lective decision-making strategies. Such analyses would further 

refine models of team coordination and improve the design of 

adaptive collaborative systems.

Limitations of the study

While our study provides valuable insights into team dynamics 

using a VR-based triadic sensorimotor task, several limitations 

should be noted. First, although our task offers an immersive 

and controlled setting, it differs from real-world scenarios in 

complexity and duration. Thus, further research should explore 

whether the findings generalize to longer, more complex collab

orative tasks. Second, the predictability metric we introduced is 

based on short-term predictions (0.5-s future actions). Although 

this short-term prediction effectively captured immediate behav

ioral and physiological relationships among team members, its 

applicability to scenarios involving long-term strategic planning 

or more intricate decision-making remains unknown.
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STAR★METHODS

KEY RESOURCES TABLE

EXPERIMENTAL MODEL AND SUBJECT DETAILS

54 healthy human participants (age = 23:67 ± 3:34 year (mean ± standard deviation); 27 females, 27 males) voluntarily participated in 

the three experiments. These participants were divided into 18 triad teams, and each team participated in three sessions on different 

days. All participants were allocated to experimental groups based on their availability. Due to incomplete sessions, data from one 

team were omitted from the final dataset. Data from four teams were omitted from the pupil size analysis due to invalid pupil size 

recordings of one or more co-pilots. EEG data from nine teams were excluded from the analysis due to error-prone recordings iden

tified during preprocessing. Similarly, speech event data from ten teams were excluded because the speech event detection algo

rithm failed to extract speech events from one or more participants within the team. No participants or teams dropped out of the 

experiment due to motion sickness or other symptoms related to virtual reality. All participants had normal or corrected-to-normal 

visual acuity and gave informed consent before participating in each experiment. Human subject protocols were approved by the 

Columbia University Institutional Review Board.

METHOD DETAILS

Virtual environment

The virtual environment was built using Unreal Engine 4.25.4. The four main reactive objects in the virtual environment were 1. a 

spacecraft, 2. a countdown timer, 3. the rings, and 4. the Earth. As shown in Figure 1B, three viewing windows with different shapes 

and at different positions were placed at the front of the spacecraft. Each subject in the triad team was assigned to look through one 

window, and the degree of freedom the subject controls was fixed per experiment session, corresponding to its respective window. 

The ThrustPilot, who controlled the speed of the spacecraft, had the largest unobstructed field of view, which was located at the bot

tom of the spacecraft. The YawPilot, who controlled the left-right spacecraft movement, was located at the top-left of the spacecraft. 

The PitchPilot had a viewing window on the top-right and controlled the up-down movement of the spacecraft. Because the positions 

and shapes of the windows were different, subjects with different roles had partial and biased views of the environment. The field of 

view of the virtual camera of each co-pilot is 80◦in Unreal Engine.

A countdown timer bar was displayed at the bottom of each window to indicate the remaining time for each trial. Initially, the timer 

bar was completely black. As time elapsed, the black portion of the bar gradually decreased, revealing an increasing white segment. 

This white segment represented the time that had passed and was inversely proportionate to the black portion, which showed the 

remaining time. Each trial had a maximum duration of 55 s. The timer would automatically stop and reset if the team either success

fully navigated through all the rings and approached Earth, or failed to pass through any ring during the trial. Despite this, with the 

default speed of the spacecraft, teams would require at least 60 s to pass through all rings in a trial, presenting a significant challenge 

and requirement for active participation and collaboration with the ThrustPilot.

The rings were transparent red toruses that represented a trial’s reentry path. At the beginning of each trial, a sequence of fifteen 

rings was generated, spaced equally but positioned at varying horizontal and vertical coordinates. The distance between any two 

REAGENT or RESOURCE SOURCE IDENTIFIER

Critical commercial assays

Physiological and behavioral data This paper https://osf.io/u89s6/?view_only=8d7f6086c42f4bedb06232a12ac128b3

Software and algorithms

Unreal Engine 4.25.4 Epic Games https://www.unrealengine.com/en-US

LabRecorder (1.14.0) https://github.com/labstreaminglayer/App-LabRecorder

Python MNE (1.6.1) Gramfort et al.44 https://mne.tools/1.7/index.html

Python noisereduce Sainburg et al.45 https://github.com/timsainb/noisereduce

Analytic code This paper https://github.com/liinc-lab/predictability_performance_and_ISC

Other

VIVE Pro Eye HTC https://www.vive.com/sea/product/vive-pro-eye/overview/

B-Alert X24 Advanced Brain Monitoring https://www.advancedbrainmonitoring.com/products/b-alert-mobile

RTX A6000 GPU NVIDIA https://www.nvidia.com/en-us/design-visualization/rtx-a6000/
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adjacent rings was 50,000 units in Unreal Engine. The Earth was positioned at the end of the path with 50,000 units from the final ring. 

The trial ended when the spacecraft, operated by the team of participants, successfully navigated through all rings and stopped in 

front of Earth. Upon successful completion, the term ‘‘Successful’’ will be displayed on each participant’s head-mounted display 

(HMD) for 1 s. Subsequently, a new trial will automatically be started.

Apparatus

In all experiments, each participant was equipped with VIVE Pro Eye head-mounted displays (HTC Corporation; resolution: 1440×

1600 pixels per eye; refresh rate: 90 Hz), and an EEG device with 20 electrodes was placed in accordance with the international 10–20 

system (Advanced Brain Monitoring B-Alert X24; sample rate: 256 Hz). A USB microphone was set in front of each subject to enable 

communication between subjects, and Mumble (version 1.4.230) was running locally on each desktop. We used LabRecorder 

(version 1.14.0) to collect the multi-modal data. Each head-mounted display is connected to a desktop with an Intel Core i9 CPU 

and an NVIDIA RTX 2070 Super GPU. The three desktops were connected to a local, secure WiFi network with a 2.6 Gbps router 

using client-server network protocols to communicate. The server was another desktop with an Intel Core i9 CPU and an NVIDIA 

RTX 2080 Super GPU.

Procedure

In each experiment, three participants arrived at the lab and watched an instructional video before the first session. Following the 

setup of the EEG devices, participants were escorted to three separate EEG recording chambers designed to block sound and elec

trical noise. These chambers were additionally acoustically shielded with 2-inch thick soundproofing foam to prevent echoes and 

minimize noise interference. We assisted the participants in setting up head-mounted displays and remote controllers.

Individual eye calibration commenced once each participant was fully equipped and settled. The calibration was conducted using 

the VIVE Pro Eye system. Each experiment began with five pilot trials following eye calibration, allowing subjects to familiarize them

selves with the task environment before the commencement of data collection. A trial was terminated when the team failed to pass a 

ring due to a crash or a miss or if the time limit was exceeded. After the pilot trials, participants were notified via headphones that the 

experiment had officially started.

Each team participated in three repeated sessions of the same experiment. Each session was spaced at least 24 h apart, and no 

participant had participated in nor had familiarity with the task before their first session. Within each experiment session, roles were 

randomly assigned to the subjects. After each experimental session, all participants were asked to complete a post-task question

naire separately (see the post-task survey in post task survey for details).

QUANTIFICATION AND STATISTICAL ANALYSIS

Data preprocessing

We implemented different pre-processing methods for various data modalities. For pupil size data, we first detected and removed 

blinks and artifacts. Then, we applied linear interpolation and Z-scored the pupil size data. This was followed by averaging the pupil 

size between the left and right eyes and a fourth-order Butterworth lowpass filter to remove high-frequency noise.

The EEG pre-processing included filtering the raw EEG data using fourth-order Butterworth bandpass filters with bands 0.5 Hz– 

100 Hz (MNE 1.6.144). Manual bad channel rejection was conducted to remove error-prone channels in each recording. Then we per

formed Independent Component Analysis (ICA)46 and used the Multiple Artifact Rejection Algorithm (MARA)47 to separate and reject 

artifact components.

Remote controller actions were first down-sampled to 60 Hz. Next, values greater than 0.5 were assigned a value of 1, values less 

than − 0.5 were assigned a value of − 1, and values between − 0.5 and 0.5 were assigned a value of 0.

The speech preprocessing involved three steps. First, we applied the noise reduction function45 to the speech recordings from 

each subject to remove background noise. Next, we used a simple voice activity detection function to extract speech events. Finally, 

the speech events were down-sampled to 60 Hz. All data modalities were then epoched based on the relative time to the respective 

rings and saved for analysis.

Post Task Survey

After each experimental session, all participants were asked to complete a survey comprised of demographic and subjective ques

tions. In this study, our analysis concentrated on two specific subjective questions.

(1) How helpful was each of your teammates in reaching the final goal?

(2) How well did you know each of your team members before today?

Each participant was required to select one of three possible answers for each question that concerned every other team member, 

excluding themselves. These answers were scaled as 0 = Not at all, 1 = A little, and 2 = Very well. The responses to the helpfulness 

(Question 1) and familiarity (Question 2) questions were assessed based on the team and the specific experiment session. The 
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helpfulness and familiarity scores ranged from 0 to 12 for each team. A score of 0 indicated that all three participants rated ‘Not at all’ for 

each of the other two team members. In contrast, a score of 12 indicated that every participant rated ‘Very well’ for their teammates.

Pupil size, remote controller action, and speech event synchronies

This study computed the inter-subject correlation (ISC) across the three subjects using their pupil sizes, remote controller actions, 

and speech events. For each experiment session, we computed the Pearson Correlation Coefficient (r) between each pair of par

ticipants, participant a and participant b, with their distinct roles within the same team, for one data modality at a time, using 1

ra;b =

∑n

i = 1

(ai − a)(bi − b)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i = 1

(ai − a)
2 ∑

n

i = 1

(bi − b)
2

√ : (Equation 1) 

n was the length of one epoch of data. The team ISC in one epoch repoch was the averaged ISC across three co-pilots.

EEG ISC

To assess inter-brain synchronization, we computed ISC using Correlation Component Analysis (CorrCA).48 This approach involved 

utilizing linear combinations of EEG channels or EEG signals with other data modalities as separate channels that maximize the ISC 

on the data obtained from subjects within the same team. In our study, we employed an improved version of CorrCA to compute the 

correlation between multiple subjects within the same team while performing a collaborative control task. The EEG signals of each 

subject contained 20 channels, and the approach finds a weight vector w that maximizes the Pearson Correlation between subjects 

in the team.

The weight vector w determines which linear combination of different channels provided the most significant correlation among 

team members. Given the EEG signals of the three subjects, denoted as X1;X2, and X3, where Xn ∈ RD×T with D representing the 

number of channels and T representing the number of time steps in an epoch, the weight vector w could be computed by:

w = argmaxw

(
wT R12w

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
wT R11w

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
wTR22w

√

)

;

where Rij =
1

T
XiX

T
j

(Equation 2) 

We defined the within subject covariance as Rw =
∑N

i Rii and between subject covariance as Rb = 
∑N

i

∑N
j;j > iRij. Here, N = 3 de

noted the number of subjects in each experiment. We computed the eigenvectors ek of R− 1
w Rb and ranked the eigenvectors in de

scending order based on the corresponding eigenvalues. Hence, the ISC was the maximum value of the strengths of correlations Ck , 

where

Ck =
eT

k Rbek

eT
k Rwek

: (Equation 3) 

Statistical test

All statistical analyses of team performance, subjective ratings of team members, synchrony measures, and team predictability were 

performed using repeated measures analysis of variance (repeated measures ANOVA) with Bonferroni correction. In all analyses, the 

average of a team’s measurement during a given experimental session was treated as one data point. The repeated measures design 

accounts for within-team variability across sessions, allowing for more accurate estimation of session effects.

Significance levels were indicated in the figures using asterisks, which are defined in each figure legend. Specifically, p values were 

categorized as follows: ∗p < 0:05; ∗ ∗ p < 0:01, and ∗ ∗ ∗p < 0:001. All statistical tests reported in the figures refer to the results of 

repeated measures ANOVA unless otherwise stated in the figure legends.

The generative forecasting model

The predictive model we implemented was a multi-head attention-based neural network that tracked relationships between events in 

data within the time domain. Figure 3B illustrates the structure of the model. The input to the model included the team’s spacecraft 

trajectory along with the behavioral and physiological data of two participants. The transformer model utilized both encoders and 

decoders discussed in the original transformer model.49 The 8-head attention layers in the encoder and the masked 8-head attention 

layers in the decoder were implemented as follows:

MultiHead(Q;K;V) = Concat(head1;…;head4)W
O;

where headn = Attention
(
QWQ

n ;KWK
n ;VWV

n

)
;

[
WQ

n ;W
K
n

]
∈ Rdm×dk ;WV

i ∈ Rdm×dv ;WO ∈ Rhdv×dm

(Equation 4) 
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We used dk = dv = dm=h = 64 in this work. The Attention function took a set of queries as a matrix Q, the keys matrix K, and the 

values matrix V. The output of the Attention layer was:

Attention(Q;K;V) = softmax

(
QKT

̅̅̅̅̅
dk

√

)

V : (Equation 5) 

All training and testing were conducted on a single NVIDIA RTX A6000 GPU, utilizing CUDA version V12.2.140. To further validate 

our model, we monitored metrics such as loss and accuracy during the training phase and utilized a validation dataset to assess per

formance periodically.

Model evaluation

We evaluated the predictive model’s performance by computing the Pearson correlation coefficient r between the prediction and the 

target. To do so, we first computed the correlation of each individual using 1, where a was the concatenated target actions, and b was 

the concatenated model predictions.

Predictability as a biomarker

The predictive model we developed generates predicted future actions for each co-pilot based on the behavioral and physiological 

data of the other two co-pilots. These predictions are then correlated with the co-pilots’ actual actions to compute a unique corre

lation score for each individual. We employ (1) to calculate the holistic team biomarker, which averages the predictability scores 

across the three co-pilots.

Generalized linear mixed-effect model

As an extension to the generalized linear model (GLM), the linear predictors of the generalized linear mixed-effects model (GLMM) 

contained random effects in addition to the usual fixed effects.50 Given that our dependent variable—team performance—is 

measured as the count of successfully passed rings, it does not follow a normal distribution. Therefore, a GLMM was chosen.

We used the GLMM in Python statsmodels51 to investigate the relationship between varied variables with team difference consid

ered as random-effect.52 The final regression formula of each model was listed in supplemental information in general form:

y = Xβ + Zμ + ε; (Equation 6) 

where y is the outcome variable. X represents the predictor variables. β is a column vector of the fixed-effects regression coefficients, 

and Z is the design matrix for the random effects (the random complement to the fixed X). μ is a vector of the random effects (the 

random complement to the fixed β), and ε is a column vector of the residuals.

Asterisks indicate statistically significant differences, defined as ns, not significant, ⋅P < 0:1;∗P < 0:05;∗ ∗ ∗P < 0:001.
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